
© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

LIVE-STREAMING VIDEO
LATENCY SCENARIOS FOR EVERY USE CASE

LOW
LATENCY

HIGH
RESOLUTION

ALL-CONDITIONS
PLAYBACK

INTRODUCTION

Live-streaming video is now ubiquitous across industries. Whether it’s news,
sports, game-streaming services, user-generated content (UGC) apps or
telepresence and Web conferencing solutions, everyone wants a piece of
the real-time action. But despite nearly two decades of video-streaming
refinement, one complaint is still common from video streamers and
viewers: latency is too high.

Latency refers to the delay between the time a live stream is captured on
camera and the time it appears on a remote viewer’s screen. Live-streaming
content can result in a significant amount of delay, at least when compared
to over-the-air (OTA) or cable television broadcasts. Even though “live”
cable broadcasts have five to 10 seconds of latency, viewers perceive the
broadcast signal as being instantly available, in real time, when they turn on
their TV—and they expect their live-streaming video to perform the same
way.

For many use cases, streaming at or near real time is crucial to the user
experience (UX). For example, live sports streams must keep up with cable
and satellite broadcasts, so the game-winning play isn’t spoiled for
streamers by friends, family and social-network users watching on TV.
Game streamers need real-time input from viewers on how to beat an
opponent. Live-streaming news apps need to keep pace with network and
cable TV broadcasts when breaking stories. And for telepresence and video
conferencing, low latency is key for simulating real-life interaction.

However, this presents a challenge for the streaming industry: It must strike
a balance between traditional streaming protocols and specialized players
that provide relatively low latencies, on one hand, and Web-friendly,
massively scalable streaming formats offering longer latencies on the other.
Using HTTP-based streaming with HTML5 video players that don’t require
additional plugins is an appealing option—but the higher latencies that
typically come with them are less desirable.

What’s more, due to recent decisions by major technology providers such
as Apple and Google, universal support for Flash Player in browsers is fading
fast. For many years, the Flash browser plugin has led the pack in delivering
low-latency audio and video streams across markets. So, what are the
alternatives?

Luckily, there are several options for broadcasters and content providers,
depending on the intended use case. In this guide, we’ll discuss:

• Latency causes and considerations
• Streaming delivery methods
• Emerging low-latency technologies, such as WebRTC and WebSocket

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

YOU CAN’T HAVE IT ALL: CONSTRAINTS ON
STREAMING VIDEO

For our purposes, video streaming has three conflicting
constraints when it comes to playback quality and interactivity:

• Low latency
• High resolution
• All-conditions playback (the ability to play, without

interruption, on any device under a variety of network
 and playback conditions)

In most use cases, you can effectively meet two of these
constraints—but achieving all three is really challenging. Why?
These conditions tend to work against each other: If you want
to play at high resolution on the maximum number of devices,
latency will usually be higher ; if you want to stream at low
latency to a large audience, quality tends to suffer; and so on.

The ability to stream in any network condition is a reason many
have adopted adaptive bitrate (ABR) playback methods. This
allows for multiple bitrates (i.e., high quality) to be delivered,
and the user, or playback software, to adjust the stream based
on available bandwidth. All-conditions playback is also. All-conditions playback is also massively scalable through
global content delivery networks (CDNs). However, many of the ABR-friendly protocols inject latency in order to
have stable streams to the edge, and CDNs add latency of their own. Thus, optimizing for all-conditions playback
at scale generally comes at the expense of low latency.

For any given deployment, a variety of factors at both ends of the acquisition and playback chain can contribute
to latency, including:

• Encoding and/or transcoding settings
• Distribution methods
• Network topologies
• The video capture workflow (even at a camera level)
• The players and hardware being used to view live streams

However, video-streaming constraints have noticeable impacts on the end-user experience in a variety of use
cases. The higher the degree of interactivity involved, the lower-latency streams you must deliver.

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

LOW
LATENCY

HIGH
RESOLUTION

ALL-CONDITIONS
PLAYBACK

PICK ONLY ONE

Latency is a matter of time: The greater the
degree of interactivity required, the lower

latency must be.

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

01
second

05
seconds

18
seconds

45+
seconds

01
second

<

COMMON HTTP
LATENCIES TODAY

LOW
LATENCY

NEAR
REAL-TIME

UGC live streams; game
streaming and e-sports

Two-way Web
conferencing; telepresence;

real-time device control
(e.g., PTZ cameras, drones)

One-way streams of live
events to large audiences;

linear programming

STREAMING LATENCY AND INTERACTIVITY CONTINUUM

REDUCED
LATENCIES

OTT providers; live-streaming
news and sports

Higher degrees of interactivity require lower levels of latency to provide a positive UX.
Choose the latency scenario and delivery option that fits your use case.

WHAT DELIVERY OPTION SHOULD YOU CHOOSE?
Based on your use case and corresponding latency requirements, you can
choose an appropriate encoding format and streaming protocol. Again, the
degree of latency also impacts the level of viewer-to-broadcaster interactivity
you’re likely to achieve (if any). Understanding which protocols are designed for
low latency, how they’re deployed and their lowest latency thresholds will help
you make more informed design decisions.

There are a variety of common streaming protocols, each with their own ranges
of possible latency: from under 100 milliseconds to over 45 seconds. These
protocols fall into three main categories:

• Traditional streaming protocols (RTSP, RTMP)
• HTTP-based adaptive streaming protocols (HLS, HDS, Smooth Streaming,
MPEG-DASH)

• Emerging protocols (WebRTC)

Now, we’ll look at each protocol category and which use cases they’re best for.

?

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

Traditional Streaming Protocols

Common Protocols: RTSP, RTMP

Latency Range: Low; a few hundred
milliseconds to many seconds.

Use Cases: Streaming for small to
midsize audiences from a single media
server; audio and video conferencing.

Constraint Performance: Low latency
achieved when high resolution is
sacrificed.

Scalability: Requires multiple media
servers, which can be costly.

Native Players? No; must use a
dedicated media player app or browser
plug-in (e.g., Adobe Flash Player).

TRADITIONAL STREAMING PROTOCOLS
The two most popular traditional streaming protocols are:

RTSP (Real-Time Streaming Protocol):
An industry standard for two decades, RTSP has been used
for low-latency audio and video. It was used heavily by
Apple, RealNetworks and Microsoft in their past streaming
products.

RTMP (Real-Time Messaging Protocol):
Another industry staple, created to transfer audio, video and
data with Adobe Flash applications.

RTMP and RTSP streaming has historically worked well for
small to midsize audiences from a single media server.
Latencies vary from a few hundred milliseconds to multiple
seconds, depending on use case, configuration and
architecture.

Broader reach with these protocols requires many media
servers, some repeating or reflecting streams from the main
(origin) server. This linear scaling of additional media servers
for larger audiences, either in a tiered or edge network
configuration, ends up making the per-stream delivery cost
rise significantly.

So, how do these protocols perform under our quality and interactivity constraints? Especially for low-latency
situations, neither protocol is designed to adapt to changing network conditions. To ensure low-latency delivery
across spotty network connections, you might need to reduce bandwidth (and thus give up high resolution) by
delivering a stream with lowest-common-denominator quality; otherwise, you risk interruptions during playback.

In addition, RTSP and RTMP are not natively supported on many endpoints. Their use requires a dedicated media
player app or a browser plug-in, such as Adobe Flash Player for RTMP streams. However, as mentioned, Apple and
Google have both started phasing out support for Flash Player in their respective Safari and Chrome browsers.

Finally, traditional streaming protocols such as RTMP and RTSP require opening up ports beyond the standard
HTTP port 80—and these additional ports are commonly restricted by firewalls for security reasons. This,
combined with scaling challenges and lack of support on endpoints, shrinks the overall audience that can view
content streamed by RTMP or RTSP.

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

HTTP-Based Adaptive Streaming
Protocols

Common Protocols: HLS, HDS, HSS,
MPEG-DASH

Latency Range: Default HTTP latency
(18-45 seconds)

Use Cases: Live streaming for large
audiences on a wide range of devices,
including mobile

Constraint Performance: All-conditions
playback and high resolution in
exchange for higher latency

Scalability: Can be done from a single
media server using CDNs;
cost-effective

Native Players? Yes (e.g., Apple
QuickTime, native iOS and Android
players, Microsoft Silverlight)

HTTP-BASED ADAPTIVE STREAMING PROTOCOLS
These newer audio and video delivery protocols take
advantage of the widely used HTTP port 80, and deliver
streaming content as a series of “chunks.” In essence, this
HTTP-based approach sends hundreds or thousands of
small, cacheable files in sequence, which are then
reassembled into an audio and video stream. The stream is
often played using a specialized player. However, most
modern browsers now support extended HTML5 media
elements, which can also be used to play streams.

One of the major upsides of HTTP-based delivery is the
ability to scale to large audiences on a range of
devices—from laptops and desktops to smartphones and
tablets—without needing to scale out, manage and pay for
media servers. Often, a single media server can act as an
origin server for a large group of HTTP caching and delivery
servers, such as those found in a CDN.

Another benefit is that these protocols offer adaptive bitrate
(ABR) streaming. ABR streaming involves simultaneously
sending HTTP chunks with varying resolutions and bitrates. A
manifest file tells the player which quality options are
available—including lower-bandwidth resolutions for mobile
networks, and higher resolutions for Wi-Fi or wired Internet
connections. The player logic can then select the highest
possible quality that can be supported at any given moment,
adapting as conditions change.

There are a variety of HTTP-based ABR protocols, backed by different providers:

• Adobe HDS (HTTP Dynamic Streaming)
• Apple HLS (HTTP Live Streaming)
• Microsoft HSS (HTTP Smooth Streaming)
• MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP)—which all three

companies collaborated to create, and is the only ABR format ratified as an international standard

Based on what we hear from content distributors, usage of HDS and HSS is likely to fade over time. Due largely to
the Apple iTunes requirement to use HLS for iOS streaming, non-standardized HLS has the lion’s share of the
market among ABR formats today. With the international standardization of DASH and its adoption by many other
consumer electronic standards groups, it seemed likely to challenge HLS dominance—however, questions about
possible DASH royalties have slowed its adoption.

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

While HTTP-based formats are great for scalability, they don’t
work for real-time applications; so, what options do we have
for real-time streaming? Luckily, there are two
up-and-coming technologies: WebSocket and WebRTC.

WebSocket is a communications protocol that can be used
with other streaming protocols, such as RTMP, WebRTC or
other commercially available protocols, including Haivision
SRT, Wowza WOWZ and Aspera FASP.

WebSocket was designed to provide a standardized, two-way,
reliable communications channel between a browser and a
server. It’s often used to send text, metadata and other
information with latencies of under 200 milliseconds, even on
older cellular networks. If data gets lost in transmission, it will
wait for the data to be re-sent and successfully arrive. That’s
great when connections are stable—but when they are
unreliable, latency can be introduced, and streams may be
interrupted when the lost information is requested again.

One of the newest entrants for streaming is WebRTC (Web
Real-Time Communications). As its name states, WebRTC is

A new Common Media Application Format (CMAF) standard is now emerging that will soon make either HLS or
DASH a safe bet. CMAF chunks will allow you to use the same HTTP audio and video for both DASH and HLS,
changing only the manifest used by the player to retrieve the chunks. What’s more, with Android adoption in
Honeycomb, HLS has become ubiquitous in mobile.

Each of these ABR formats provides excellent scalability using standard CDNs. However, latency ranges from 15
to 45 seconds. Looking at our quality constraints, HTTP-based ABR protocols facilitate all-conditions playback for
everyone at the highest resolution their device and network connection can sustain—but this comes at the
expense of low latency. And again, CDNs inject additional latency.

One common question is: Can the HTTP chunks, which are typically between two and 10 seconds long, be
shortened to one-second lengths to make latency competitive with cable TV? The short answer is, yes and no.

An HTTP-based protocol can be tuned for low-latency delivery at closer to five seconds; in fact, Facebook’s
custom infrastructure uses MPEG-DASH with one-second chunk sizes, resulting in less than three seconds of
latency. However, Facebook’s is one of the most complex use cases in the industry. For most purposes, chunks
cannot practically be lowered below one second—at least, not without introducing network inefficiencies and
likely glitches for viewers.

Since they can’t be lowered to near real-time delivery, there’s no practical way to use HTTP-based delivery for
applications where the UX relies on instant interactivity, such as video chat. However, these protocols are great
for broadcasting live events to large audiences viewing low-latency or time-shifted content across a wide range
of modern, ABR-ready devices.

EMERGING TECHNOLOGY
Emerging Technology

Common Protocols: WebSocket,
WebRTC

Latency Range: Real-time; one second
or less

Use Cases: Real-time live streaming,
chat and video conferencing

Constraint Performance: Low latency,
high resolution and a partial win for
all-conditions playback

Scalability: Can be scaled up from
media or edge servers without
specialized plug-in architectures

Native Players? Not necessary; native
stream encoding and playback in
compatible browsers available

HTTP-BASED ADAPTIVE STREAMING PROTOCOLS (CONTINUED)

designed for real-time audio, video and data delivery over less-reliable connections. It’s often referred to as a
protocol, as we do here, but it’s really a collection of protocols and APIs—and is in the process of being ratified as
a standard. While not as simple as WebSocket, it has a greater depth of features, and its adoption has been
championed by Google.

WebRTC applications are easily deployed without plug-ins, thanks in part to native stream encoding and playback
available in compatible HTML5 browsers (Safari is the exception, but Apple has hinted WebRTC support is
coming). WebRTC accommodates latencies of one second or less, and as low as 200 milliseconds, on par with
traditional video conferencing hardware endpoints.

Like video conferencing hardware, WebRTC can use VP8/H.264 for the primary codec, so it’s perfectly suited for
one-to-one or small-group live chat. WebRTC is also popular for creating browser-based streaming applications;
it’s best supported by Chrome, Firefox, Microsoft Edge or Microsoft Internet Explorer.

However, the true appeal of WebRTC is that it can be scaled up, using more robust media servers as well as edge
servers. In this way, streaming architectures are similar to RTMP or RTSP delivery approaches—without the need
for specialized plug-in architectures at the endpoints.

It takes more work to scale WebSocket and WebRTC streaming than HTTP streaming. But the low-latency reach
of these emerging protocols to most modern HTML5 browsers helps bridge the gap between protocols such as
RTMP and HLS. In this way, emerging protocols perform best under our streaming constraints: low latency and
high resolution are achieved, and all-conditions playback is largely accomplished. While you don’t get adaptive
streaming, you can reach most screens.

In some applications, WebSocket and WebRTC can be used together. For example, WebSocket can be used to set
up connections between two parties, with WebRTC handling to exchange audio and video. With their
direct-to-browser communications, both the WebRTC and WebSocket protocols can provide real-time
communications capabilities—and help replace older protocols.

EMERGING TECHNOLOGY (CONTINUED)

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

http://iswebrtcreadyyet.com/

Two-Way and Chat

Required Latency: Real-time streaming (<1 second)

Use Cases: Two-way Web conferencing; telepresence;
real-time device control (e.g., PTZ cameras, drones)

Interactivity Level: High

User Experience: Many-to-many; many-to-one (e.g., multiple
game streamers synced to the same display); one-to-one
communication (e.g., telepresence)

Best Fit: WebRTC protocol, or WebSocket with RTMP

Keep in Mind: When broadcasting one-to-many streams, may
need to use a single server for a given event. When
synchronizing a real-time video stream and the output of a
multi-camera video mixer, may need to use traditional
SDI-based video mixing around for your image magnification
(IMAG) and multi-display video-wall technology solutions.

Interactive

Required Latency: Low (1-5 seconds)

Use Cases: TUGC live streams; game streaming and e-sports

Interactivity Level: Medium

User Experience: Optional viewer-to-viewer or
viewer-to-broadcaster engagement (e.g., apps with
ephemeral video; live event broadcasts on UGC or social
media platforms, such as awards shows, protests or elections)

Best Fit: Tuned HTTP ABR streaming using RTMP, RTSP and/or
WebSocket; WebRTC protocol with applications/browsers
tuned to enable origin routing and eliminate latency
bottlenecks

Keep in Mind: You may need to load-balance and/or have a
robust edge network when using tuned HTTP ABR streaming.
Encoding options for WebRTC vary widely from those for
HTTP ABR streaming.

Broadcast Experience

Required Latency: Reduced (5-18 seconds)

Use Cases: OTT providers; live-streaming news and sports

Interactivity Level: Low

User Experience: One-to-many broadcasts of live events,
where streams must compete with cable and satellite TV
broadcasts to avoid spoilers for viewers

Best Fit: RTMP; tuned HTTP ABR streaming; cloud-based
transcoding

Keep in Mind: For latency near the five-second end of the
range, a video switcher mixing multiple cameras with
on-screen graphics can be a good fit. Reducing the number
of workflow steps (e.g., by combining transcoding and
packaging) can help reduce latency even further.

No Time Constraints

Required Latency: Default HTTP (18-45 seconds)

Use Cases: One-way streams of live events to large
audiences; linear programming

Interactivity Level: None

User Experience: Live event broadcasts to audiences of 200
simultaneous viewers or more, where interactivity isn’t a
factor; non-time sensitive programming

Best Fit: Standard HTTP ABR delivery

Keep in Mind: Audiences of 200-500 simultaneous viewers
can likely be handled with direct delivery from a single media
server instance (depending on server hardware and the mix of
playback devices, operating systems and screen resolutions).
Larger audiences may be best served with a content delivery
network (CDN) sourcing from a single media server.

THE FOUR LATENCY SCENARIOS:
WHAT’S YOUR USE CASE?

WHAT DOES THE FUTURE HOLD?

We’re moving toward a market where industry standards and technology
commoditization enable any-screen reach, all across the streaming and
interactivity continuum. Given the number of use cases for audio and video, it’s
no surprise there is not yet a one-size-fits-all streaming protocol. However, it’s
now feasible to build an integrated, modern video infrastructure that covers the
full spectrum of the streaming latency continuum—from the longer latencies
common when using default ABR streaming to the latest, real-time options for
two-way communications.

Wowza multi-protocol streaming technologies provide you with future-ready deployment options. For
low-latency and real-time communications, Wowza Streaming Engine software can help with a range of use
cases—from RTMP and RTSP to modern WebRTC streaming. For latencies similar to cable TV and higher,
massively scalable HLS and other HTTP formats are available. What’s more, using WebSocket and HTTP
capabilities, you can host text chat and data streams on the same server used to stream audio and video.

Regardless of use case, Wowza offers the flexibility to balance your quality and interactivity constraints. With
Wowza software, you can explore innovative approaches to delivering streams across the latency continuum.

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

WHICH PROTOCOL IS RIGHT FOR ME?
Today, the streaming protocol you choose depends less on whether it
can scale, and more on your use case. This includes the interactivity
levels (and subsequent latency rates) you need, and the device-usage
patterns of your audience.

With Flash Player now actively blocked in some browsers—and with the
rise of plugin-free alternatives for browsers—RTMP usage for delivery
will significantly decline over the next five years. Pundits have long
decried the death of Flash Player, but for many years, there were no
alternatives that provided equal reliability, quality and market ubiquity.

But now, there are two clear front-runners to replace traditional
streaming protocols. For normal- and reduced-latency mass
distribution using standard CDNs and other Web infrastructure, HLS
currently leads the ABR market. For low- and near real-time latency,
WebRTC is well-positioned to pick up market share. As support for
WebRTC increases, RTMP’s decline will likely hasten as older devices,
desktops and browsers are retired.

?

RTSP, RTMP

HLS, HDS, Smooth,
MPEG-DASH

WebRTC

© Copyright 2017 Wowza Media SystemsTM, LLC. All rights reserved.

RESOURCES

Low Latency – What Is It and Who Needs It?
www.wowza.com/blog/what-is-low-latency-and-who-needs-it

Achieving Low Latency With Wowza
www.wowza.com/products/capabilities/low-latency

Leverage WebRTC for Low Latency and Optimized Two-Way Communication
www.wowza.com/products/capabilities/webrtc-streaming-software

https://www.wowza.com/blog/what-is-low-latency-and-who-needs-it
https://www.wowza.com/products/capabilities/low-latency
https://www.wowza.com/products/capabilities/webrtc-streaming-software

